

Unicode Shellcode and Improvements

Le Duc Anh
Security Vulnerability Research Team

Bach Khoa Internetwork Security (Bkis)
Ha Noi University of Technology - Viet Nam

[ABSTRACT] ... 3

I. UNICODE SHELLCODE & THE VENETIAN METHOD... 3

1. The Venetian Method .. 3

1.1 00xx00 machine code ... 3

1.2 ANSI Shellcode to Unicode Shellcode... 4

2. Estimation ... 6

2.1 Method 1... 6

2.2 Method 2... 6

II. Drawbacks and Improvements... 7

1. Drawbacks... 7

2. Improvements to the Venetian Method ... 7

2.1 Improvement to the ASCII Venetian Methods .. 7

2.2 Improvements to the Sorter .. 8

2.3 Use of Alpha2 Shellcode .. 9

3. Further Development ... 11

3.1 The Decoder’s length .. 11

3.2 Other sorting algorithms... 11

III. UNISHELL GENERATOR.. 12

IV. CONCLUSION .. 13

VI. REFERENCE ... 13

[ABSTRACT]
Buffer overflow bugs are amongst the most prevalent and the most critical bugs today.

On exploiting these bugs, we often encounter the problem of Unicode format which

prevents our shellcodes from executing properly. This is caused by the fact that many

software use functions like MultiByteToWideChar() to convert character (ANSI) strings

into their wide character (Unicode) equivalents.

As we were looking through these materials to perform some Unicode Buffer Overflow

exploitation, we saw that there is still room for improvement in Unicode Shellcode. This
documentation will cover conventional methods to write a Unicode shellcode and the

improvements that we have applied.

I. UNICODE SHELLCODE & THE VENETIAN METHOD
Unicode shellcode, like its name, is a piece of executable machine code that has the form
of a Unicode string with NULL bytes (0x00) and not null bytes arranged alternatively.

To make distinction between Unicode shellcode and the conventional one, this document

will use two terms Unicode Shellcode and ANSI Shellcode.

1. The Venetian Method

1.1 00xx00 machine code
This method was proposed by Chris Anley [1]. According to this method, all the code of

a shell must follow these rules:

- The machine code must have the form 00xx00

- The xx byte must be a printable character.

; One-byte instructions

00401066 50 push eax

00401067 59 pop ecx

; Instructions with the 00xx00 format:

00401068 6A 00 push 0

0040106A 05 00 75 00 4C add eax, 4C007500h

; Here is a special instruction in Unicode Shellcode, which can be used like

; NOP instruction (0x90) in conventional shellcode. Because it does not

; affect the proper execution of our Unicode Shellcode

00401071 00 6D 00 add byte ptr [ebp],ch

Using instructions following those rules, we can replace quite a bunch of conventional

instructions, and thus can create a small executable Unicode Shellcode.

1.2 ANSI Shellcode to Unicode Shellcode
As we have concerned, 00xx00 instructions can be used to create Unicode Shellcode that

performs some simple tasks. However, in order to implement more complex functions,

we will have to spend a lot of time and even brainpower on writing the code.

As there have been many tools generating Shellcode in ANSI format, it would be rather

useful and wise if there is a way to convert these shells into the Unicode format.

Shellcoder’s Handbook has introduced two ways [2] to achieve that:

1.2.1 Method 1
Here comes the conversion scheme and the structure of a Unicode Shellcode in memory
in method 1:

DECODER ANSI SHELLCODE TRANSFORMED

Unicode Shellcode’s layout in memory

ANSI Shellcode transformed into Unicode format: This is a conventional ANSI

shellcode, yet has been transformed in a specific manner. When read into the memory, it

is converted to its Unicode equivalent.

; The original ANSI Shellcode

\x41\x42\x43\x44\x45\x46\x47\x48

; The transformed shellcode with characters lost at even-indexed positions

\x41\x43\x45\x47

; The transformed shellcode converted to Unicode format when read into memory

\x41\x00\x43\x00\x45\x00\x47\x00

Decoder: This is the piece of code that would bring the “Unicode Characters encoded

from ANSI Shellcode”, or the transformed ANSI Shellcode, back into its original form.

The decoder must obey the rules of 00xx00 instructions discussed before.

; Decoding Steps:

 1. \x41\x42\x43\x00\x45\x00\x47\x00

 2. \x41\x42\x43\x44\x45\x00\x47\x00

 3. \x41\x42\x43\x44\x45\x46\x47\x48

The ASCII Venetian Implementation: One difficulty in decoding the shell is that

unprintable characters (like 0x80) will be converted into their Unicode equivalents in a

special way (0xAC02 for 0x80). Shellcoder’s Handbook has suggested a solution to this:

; Characters with ASCII code in the range [0x20-0x7F] are printable, and

therefore we do not have to make any change to them

; Characters in the range [0x7F-0xAF] can be formed by adding a character in

the range [0x20-0x7F] with 0x39

; Characters in the range [0xAF-0xFF] can be formed by adding a character in

the range [0x20-0x7F] with 0x69

; Characters in the range [0x00-0x20] can be formed by adding a character in

the range [0x20-0x7F] with 0xA2 (or + 0x69+ 0x39), irrespective of the

overflow.

1.2.2 Method 2 :
Method 2 is indeed an upgrade of the previous one in terms of reducing the size of the

Unicode Shellcode. Here is the layout of a shellcode according to this method:

DECODER MIXED SHELLCODESORTER

Unicode Shellcode’s layout in memory

Mixed up ANSI Shellcode: Here is the technique used to mix the shellcode up by
Shellcoder’s Handbook:

; The original Shellcode

\x41\x42\x43\x44\x45\x46\x47\x48

; Mixed Shellcode

\x41\x43\x45\x47\x48\x46\x44\x42

; Mixed up Shellcode in Unicode format in memory

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Sorter: rearranges the mixed up shellcode so that it comes back to its original state. The

sorter used by Shellcoder’s Handbook has a length of 23h.

; Unicode string needed to be rearranged:

 1. \x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

; Move 0x42 into the first NULL byte:

 2. \x41\x42\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

; Move 0x44 into the next NULL byte:

 3. \x41\x42\x43\x44\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

; Move 0x46 into the next NULL byte:

 4. \x41\x42\x43\x44\x45\x46\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

; Move 0x48 into the next NULL byte:

 5. \x41\x42\x43\x44\x45\x46\x47\x48\x48\x00\x46\x00\x44\x00\x42\x00

Decoder: For the first method, the decoder will work on the whole transformed ANSI

Shellcode. But in method 2, the decoder will work only on the Sorter, which is 23h long.

2. Estimation
We have estimated the length of the shellcode generated using the above two methods.

2.1 Method 1
Supposing the original Shellcode has a length of a=x+y+z+t, where x, y, z, t is the

number of bytes shown in the following table:

ASCII Range [0x00-0x20] [0x20-0x7F] [0x7F-0xAF] [0xAF-0xFF]

Number of bytes of

shellcode in this range

x y z t

Number of bytes in the

Decoder to decode one

byte in the range

30 22 26 26

For this method, after being transformed into Unicode format in the memory, the

transformed part of the Shellcode will have a length of a.

The decoder will have a length of 30x+22y+26z+26t.

The total length of the shellcode will be: 30x+22y+26z+26t+a > 22(x+y+z+t)+a = 23a.

So the length of the new Unicode Shellcode will be 23 times as much as the original

ANSI one. In other words, if the original is 100h long, the corresponding Unicode

Shellcode will be 1700h long, which is such an amazing expansion.

2.2 Method 2

The ANSI Shellcode after being mixed up and converted in the memory will have a

length of 2a.

The Sorter, as discussed above, is 23h long.

The decoder: 30x+22y+26z+26t > 22(x+y+z+t) = 22*23h.

So the total size of the Shellcode is approximately 23*23h +2a, which is a lot smaller

than the length of 23a in method 1.

Using method 2, if an ANSI Shellcode has a length of 100h, the corresponding

Unicode Shellcode will have a length of 525h (<<1700h).

II. Drawbacks and Improvements

1. Drawbacks

Shellcoder’s Handbook has talked rather well about the way to change an ANSI

Shellcode into its Unicode equivalent. However, there are still some issues:

 - How to build a real one?

- Is there any better ASCII Venetian implementation to build the decoder ?

- How should the original ANSI Shellcode be formed to reduce the size of

the Unicode Shellcode ?

- Could we make the Unicode Shellcode smaller ?

We have worked on these questions and found some solutions based on the second

method talked above.

2. Improvements to the Venetian Method
Let us show you the layout of a Unicode Shellcode according to method 2 again:

DECODER MIXED UP ANSI SHELLCODESORTER

Unicode Shellcode’s layout in memory

As we have said, the size of shellcode generated by method 2 is rather small in

comparison with that generated by method 1. But, we can still reduce its size.

2.1 Improvement to the ASCII Venetian Methods
It can be seen that the size of the decoder in the ASCII Venetian method for printable

characters is smaller than that for unprintable ones (22 bytes compared to 26 and 30

bytes). Therefore, the more unprintable characters an ANSII Shellcode contains, the

longer the decoder is.
There is one interesting thing is that characters in the range [0x00-0x7F] and [0xA0-

0xFF] can be converted into Unicode in the same way as used for printable characters in

the range [0x20-0x7F].

ASCII Range [0x00-0x7F] [0x7F-0xA0] [0xA0-0xFF]

Number of bytes of

shellcode in this range

x y z

Number of bytes in the

Decoder to decode one

byte in the range

22 26 22

Therefore, we can use the decoder used for printable characters to decode characters in

the range [0x00-0x7F] and [0xA0-0xFF]. The decoders for other ranges still keep the

same.

Character Range [0x00-0x7F] [0x7F-0xA0] [0xA0-0xAF]

Decoder’s Size 22 26 22

Number of bytes of

shell in the range

x y z

2.2 Improvements to the Sorter
As we have estimated before, the length of the shellcode in method 2 is approximately

22*23h + 2a. So if we can reduce the size of the decoder in some way, the size of the

shellcode can be reduced by 22*x, where x is the number of bytes of the decoder reduced.

To achieve that, we have changed the way in which the ANSI Shellcode is mixed up as

well as the way in which the Sorter works.

The ANSI Shellcode would be rearranged like this:

Rearrange the ANSI Shellcode

One weak point in the Sorting Algorithm introduced by Shellcoder’s Handbook is that it

must contain a part to calculate the length of the ANSI Shellcode while we actually know

the length of the shellcode as we are the ones who created it.

As a result, using those two improvements, we have created smaller Sorters as below:

2.2.1 For Shellcode <= 512 bytes

004010B4 5F pop edi

004010B5 57 push edi

004010B7 33 C9 xor ecx,ecx

004010B9 B1 ?? mov cl, [(size <=512)/2]

004010BB 51 push ecx

004010BC D1 E1 shl ecx,1

004010BE 51 push ecx

004010BF 5E pop esi

004010C0 03 F7 add esi, edi

004010C2 59 pop ecx

 here :

004010C3 47 inc edi

004010C4 A4 movsb

004010C5 46 inc esi

004010C6 49 dec ecx

004010C7 75 FA jne here

The limitation on the size of shellcode, 512 bytes, is due to the fact that CL is an 8 bit

register.

This piece of instruction is only 14h length, and thus reduces the length of the

Shellcode by 22*(23h-14h) = 330 bytes, such a big number.

2.2.2 For Shellcode > 512 bytes

004010B4 5F pop edi

004010B5 57 push edi

004010B7 33 C9 xor ecx,ecx

004010B9 66 B9 xx xx mov cx, [(size > 512)/2]

004010BD 51 push ecx

004010BE D1 E1 shl ecx,1

004010C0 51 push ecx

004010C1 5E pop esi

004010C2 03 F7 add esi, edi

004010C4 59 pop ecx

 here :

004010C5 47 inc edi

004010C6 A4 movsb

004010C7 46 inc esi

004010C8 49 dec ecx

004010C9 75 FA jne here

In order to increase the size of the ANSI Shellcode that can be used, we turned to the use

of the 16 bit register CX. Hence, the length of the shellcode can now be up to (2^16)*2
bytes, sufficient to write a Shellcode with quite a few functions.

However, because the decoder cannot contain NULL bytes (0x00), the size of the

shellcode divided by 2 (this value will be stored in CX) should avoid some values like

0x0100, 0x0200,…, 0xFF00, or generally, 0xXX0x00. This can be done by inserting

some instructions working just like NOP we have discussed before (0x 00 6D 00).

This piece of code is 16h length, which means that the shellcode will be smaller by

22*(23h-16h) = 284bytes (relatively considerable)

2.3 Use of Alpha2 Shellcode
For all these above methods, they haven’t cared about the input, in the sense of the to-be-

used ANSI Shellcode, and its effects on the length of the Unicode Shellcode.

For a normal shellcode, for instant Calc execution [4]:

For an Alphanumeric Shellcode, Calc execution [4]:

…
We used the Metasploit Framework to generate some shellcode that execute the

calculator program on Windows OS. But each of them uses a different encode method (in

the following list):

 PexFnstenvSub

 Pex

 PexAlphaNum

 PexFnstenvMov

 JmpCallAdditive

 ShikataGaNai
 Alpha2

We have developed a tool for converting Shellcode from ANSI based ones to Unicode

based equivalents. And by the use of the tool, we conducted many tests to see which

decoder is best (having the smallest in size of the output Unicode shellcode)

And an amazing fact is that the shellcode encoded by the Alpha2 decoder is best.

Decoder Input Si ze Output Size (in memory)

Alpha2 330 1200

PexAlphaNum 343 1236

PexFnstenvMov 158 1464

Pex 160 1508

ShikataGaNai 161 1548

PexFnstenvSub 160 1568

JmpCallAdditive 165 1600

3. Further Development

Though we have proposed some changes above to make the shell smaller, there is still

room for shortening the shell. Here come several ideas of optimizing based on method 2.

We haven’t succeeded in solving them yet.

3.1 The Decoder’s length
The method given by Chris Anley requires that the length of the Decoder must be a

multiple of 256 bytes or 100h in order for the pointer to the Sorter to be correctly

indicated.

05 00 75 00 4C add eax, 4C007500h

05 00 74 00 4C add eax, 4C007400h

This is quite a problem as we have to add some NOP-equivalent instructions (0x00 6D

00) to the shell and thus make the shell much bigger with some doing-nothing-code. For

example, for a 257 byte Decoder, we need to insert 255 bytes of NOP equivalents to

reach the length of 512 bytes.

So if we can find a solution to this problem, the shellcode’s size might be reduced by 0

to 255 bytes.

3.2 Other sorting algorithms
As we have talked, the size of the shellcode with our improvements is 2a, where a is the

size of the input ANSI Shellcode.

We wonder if there is a better algorithm for the sorter and the decoder to make the

shell even smaller than 2a or create a shorter Sorter.

III. UNISHELL GENERATOR
In order to put those improvements into practical uses, we have created a tool converting

ANSI Shellcode into Unicode Shellcode. This tool makes use of ShellcodeCore, a library

specializing in manipulating Shellcode, developed by SVRT-BKIS on researching into

Buffer Overflow vulnerabilities.

A screenshot of UniShellGenerator

IV. CONCLUSION
Above is our research on Unicode Shellcode based on previous documents on this issue,

and of course, our improvements to make things better. There are also some further

developments that we haven’t put into this paper.

Especially thanks to Chris Anley and the authors of the “Shellcoder’s Handbook” for

their researches into Unicode Shellcode.

VI. REFERENCE
[1]. Creating Arbitrary Shell Code in Unicode Expanded Strings – Chris Anley.

[2]. Shellcoder’s Handbook: Discovering and Exploiting Security - Jack Koziol.

[3]. Practice Win32 and Unicode exploitation.

[4]. www.metasploit.com – HD.Moore

http://www.metasploit.com/

