Unicode Shellcode and Improvements

Le Duc Anh
Security Vulnerability Research Team
Bach Khoa Internetwork Security (Bkis)
Ha Noi University of Technology - Viet Nam

=R 2T Yo 1 3

I. UNICODE SHELLCODE & THE VENETIAN METHOD.......cccoviiviiirirsceeseseeienenns 3
1. The Venetian MetNOM ... e 3
1.1 00XX00 MACNINE COUovieeieieieeeiees ettt ene s 3

1.2 ANSI Shellcode to Unicode Shellcode..........ccoivviiiinnscieec e 4

2. ESTIMALION 1.t 6
2.1 MEENOA L.ttt 6

2.2 MEENOA 2.ttt 6

[1. Drawbacks and IMProVEMENES........oci it et s 7
1. DFAWDACKS. ...ttt bbbtttk 7
2. Improvements to the Venetian Method ... 7
2.1 Improvement to the ASCII Venetian Methods.........cccoeovveennciinciccc e 7

2.2 Improvements t0 the SOMEr ... 8

2.3 Use Of AIPha2 ShellCOUEcvivciiecee e 9

3. FUrther DEVRIOPMENLcviceeeese ettt 11
3.1 The Decoder’s 1ength ... 11

3.2 Other sorting algorithmsS........cccoveiiieiicerr e 11

I UNISHELL GENERATORooicetsese et 12
IV. CONCLUSION ...ttt ettt 13

VI REFERENGCE ..o 13

[ABSTRACT]

Buffer overflow bugs are amongst the most prevalent and the most critical bugs today.
On exploiting these bugs, we often encounter the problem of Unicode format which
prevents our shellcodes from executing properly. This is caused by the fact that many
software use functions like MultiByteToWideChar() to convert character (ANSI) strings
into their wide character (Unicode) equivalents.

As we were looking through these materials to perform some Unicode Buffer Overflow
exploitation, we saw that there is still room for improvement in Unicode Shellcode. This
documentation will cover conventional methods to write a Unicode shellcode and the
improvements that we have applied.

I. UNICODE SHELLCODE & THE VENETIAN METHOD

Unicode shellcode, like its name, is a piece of executable machine code that has the form
of a Unicode string with NULL bytes (0x00) and not null bytes arranged alternatively.

To make distinction between Unicode shellcode and the conventional one, this document
will use two terms Unicode Shellcode and ANSI Shellcode.

1. The Venetian Method

1.1 00xx00 machine code
This method was proposed by Chris Anley [1]. According to this method, all the code of
a shell must follow these rules:

- The machine code must have the form 00xx00

- The xx byte must be a printable character.

; One-byte instructions
00401066 50 push eax
00401067 59 pop ecx

; Instructions with the 00xx00 format:
00401068 6A 00 push 0
0040106A 05 00 75 00 4cC add eax, 4C007500h

; Here is a special instruction in Unicode Shellcode, which can be used like
; NOP instruction (0x90) in conventional shellcode. Because it does not

; affect the proper execution of our Unicode Shellcode

00401071 00 6D 00 add byte ptr [ebp],ch

Using instructions following those rules, we can replace quite a bunch of conwventional
instructions, and thus can create a small executable Unicode Shellcode.

1.2 ANSI Shellcode to Unicode Shellcode

As we have concerned, 00xx00 instructions can be used to create Unicode Shellcode that
performs some simple tasks. However, in order to implement more complex functions,
we will have to spend a lot of time and even brainpower on writing the code.

As there have been many tools generating Shellcode in ANSI format, it would be rather
useful and wise if there is a way to convert these shells into the Unicode format.
Shellcoder’s Handbook has introduced two ways [2] to achieve that:

1.2.1 Method 1

Here comes the conversion scheme and the structure of a Unicode Shellcode in memory
in method 1:

Unicode Shellcode ’s layout in memory

ANSI Shellcode transformed into Unicode format: This is a conwventional ANSI
shellcode, yet has been transformed in a specific manner. When read into the memory, it
IS conwverted to its Unicode equivalent.

; The original ANSI Shellcode
\x41\x42\x43\x44\x45\x46\x47\x48

; The transformed shellcode with characters lost at even-indexed positions
\x41\x43\x45\x47

; The transformed shellcode converted to Unicode format when read into memory
\x41\x00\x43\x00\x45\x00\x47\x00

Decoder: This is the piece of code that would bring the “Unicode Characters encoded
from ANSI Shellcode”, or the transformed ANSI Shellcode, back into its original form.
The decoder must obey the rules of 00xx00 instructions discussed before.

; Decoding Steps:
1. \x41\x42\x43\x00\x45\x00\x47\x00
2. \x41\x42\x43\x44\x45\x00\x47\x00
3. \x41\x42\x43\x44\x45\x46\x47\x48

The ASCII Venetian Implementation: One difficulty in decoding the shell is that
unprintable characters (like 0x80) will be converted into their Unicode equivalents in a
special way (0xACO02 for 0x80). Shellcoder’s Handbook has suggested a solution to this:

; Characters with ASCII code in the range [0x20-0x7F] are printable, and
therefore we do not have to make any change to them

; Characters in the range [0x7F-0xAF] can be formed by adding a character in
the range [0x20-0x7F] with 0x39

; Characters in the range [0xAF-0xFF] can be formed by adding a character in
the range [0x20-0x7F] with 0x69

; Characters in the range [0x00-0x20] can be formed by adding a character in
the range [0x20-0x7F] with O0xA2 (or + 0x69+ 0x39), irrespective of the
overflow.

1.2.2 Method 2 :

Method 2 is indeed an upgrade of the previous one in terms of reducing the size of the
Unicode Shellcode. Here is the layout of a shellcode according to this method:

Unicode Shellcode’s layout in memory

Mixed up ANSI Shellcode: Here is the technique used to mix the shellcode up by
Shellcoder’s Handbook:

; The original Shellcode
\x41\x42\x43\x44\x45\x46\x47\x48

; Mixed Shellcode
\x41\x43\x45\x47\x48\x46\x44\x42

; Mixed up Shellcode in Unicode format in memory
\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00

Sorter: rearranges the mixed up shellcode so that it comes back to its original state. The
sorter used by Shellcoder’s Handbook has a length of 23h.

; Unicode string needed to be rearranged:

1. \x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00
; Move 0x42 into the first NULL byte:

2. \x41\x42\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00
; Move 0x44 into the next NULL byte:

3. \x41\x42\x43\x44\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00
; Move 0x46 into the next NULL byte:

4, \x41\x42\x43\x44\x45\x46\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00
; Move 0x48 into the next NULL byte:

5. \x41\x42\x43\x44\x45\x46\x47\x48\x48\x00\x46\x00\x44\x00\x42\x00

Decoder: For the first method, the decoder will work on the whole transformed ANSI
Shellcode. But in method 2, the decoder will work only on the Sorter, which is 23h long.

2. Estimation
We have estimated the length of the shellcode generated using the above two methods.

2.1 Method 1
Supposing the original Shellcode has a length of a=x+y+z+t, where X, y, z, t is the
number of bytes shown in the following table:

ASCII Range [0x00-0x20] [0x20-0x7F] [0x7F-0xAF] [0xAF-0xFF]
Number of bytes of | x y Z t
shellcode in this range

Number of bytes in the | 30 22 26 26

Decoder to decode one
byte in the range

For this method, after being transformed into Unicode format in the memory, the
transformed part of the Shellcode will have a length of a.

The decoder will have a length of 30x+22y+26z+26t.
The total length of the shellcode will be: 30x+22y+26z+26t+a > 22(x+y+z+t)+a = 23a.
So the length of the new Unicode Shellcode will be 23 times as much as the original

ANSI one. In other words, if the original is 100h long, the corresponding Unicode
Shellcode will be 1700h long, which is such an amazing expansion.

2.2 Method 2

The ANSI Shellcode after being mixed up and converted in the memory will have a
length of 2a.

The Sorter, as discussed abowe, is 23h long.
The decoder: 30x+22y+26z+26t > 22(x+y+z+t) = 22*23h.

So the total size of the Shellcode is approximately 23*23h +2a, which is a lot smaller
than the length of 23a in method 1.

Using method 2, if an ANSI Shellcode has a length of 100h, the corresponding
Unicode Shellcode will have a length of 525h (<<1700h).

II. Drawbacks and Improvements

1. Drawbacks

Shellcoder’s Handbook has talked rather well about the way to change an ANSI
Shellcode into its Unicode equivalent. However, there are still some issues:
- How to build areal one?
- Isthere any better ASCII Venetian implementation to build the decoder ?
- How should the original ANSI Shellcode be formed to reduce the size of
the Unicode Shellcode ?
- Could we make the Unicode Shellcode smaller ?

We have worked on these questions and found some solutions based on the second
method talked above.

2. Improvements to the Venetian Method
Let us show you the layout of a Unicode Shellcode according to method 2 again:

Unicode Shellcode’s layout in memory

As we hawe said, the size of shellcode generated by method 2 is rather small in
comparison with that generated by method 1. But, we can still reduce its size.

2.1 Improvement to the ASCII Venetian Methods

It can be seen that the size of the decoder in the ASCII Venetian method for printable
characters is smaller than that for unprintable ones (22 bytes compared to 26 and 30
bytes). Therefore, the more unprintable characters an ANSII Shellcode contains, the
longer the decoder is.

There is one interesting thing is that characters in the range [0x00-0x7F] and [0xAO-
OXxFF] can be converted into Unicode in the same way as used for printable characters in
the range [0x20-0x7F].

| [0x00-0x7F] | [0x7F-0xA0] | [0xA0-0xFF]
Number of bytes of | x \% Z
shellcode in this range
Number of bytes in the | 22 26 22

Decoder to decode one
byte in the range

Therefore, we can use the decoder used for printable characters to decode characters in
the range [0x00-0x7F] and [0xA0-OxFF]. The decoders for other ranges still keep the
same.

| Character Range [0x00-0x7F] [0x7F-0xA0] | [0xAO-OxAF] |
Decoder’s Size 22 26 22
Number of bytes of | x \% Z

shell in the range

2.2 Improvements to the Sorter

As we hawve estimated before, the length of the shellcode in method 2 is approximately
22*23h + 2a. So if we can reduce the size of the decoder in some way, the size of the
shellcode can be reduced by 22*x, where x is the number of bytes of the decoder reduced.
To achiewve that, we have changed the way in which the ANSI Shellcode is mixed up as
well as the way in which the Sorter works.

The ANSI Shellcode would be rearranged like this:

Original Payload | Ox41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48 |
- : T - ="
| b#/ . - -~ e -
New mixed Payload [Ox41 | 0x43 | 0x45 | 0x47 | 0x42 | 0x44 | 0x46 | 0x48 |

Rearrange the ANSI Shellcode

One weak point in the Sorting Algorithm introduced by Shellcoder’s Handbook is that it
must contain a part to calculate the length of the ANSI Shellcode while we actually know
the length of the shellcode as we are the ones who created it.

As a result, using those two improvements, we have created smaller Sorters as below:

2.2.1 For Shellcode <=512 bytes

004010B4 S5F pop edi
004010B5 57 push edi
004010B7 33 C9 XOr eCX,ecx
004010B9 Bl 27 mov cl, [(size <=512)/2]
004010BB 51 push ecx
004010BC D1 E1 shl ecx,1
004010BE 51 push ecx
004010BF 5E pop esi
004010CO 03 F7 add esi, edi
004010C2 59 pop ecx

here :
004010C3 47 inc edi
004010C4 A4 movsb
004010C5 46 inc esi
004010C6 49 dec ecx

004010C7 75 FA jne here

The limitation on the size of shellcode, 512 bytes, is due to the fact that CL is an 8 bit
register.

This piece of instruction is only 14h length, and thus reduces the length of the
Shellcode by 22*(23h-14h) = 330 bytes, such a big number.

2.2.2 For Shellcode > 512 bytes

004010B4 5F pop edi
004010B5 57 push edi
004010B7 33 C9 XOr ecx,ecx
004010B9 66 B9 xXx XX mov cx, [(size > 512)/2]
004010BD 51 push ecx
004010BE D1 El shl ecx,1
004010CO 51 push ecx
004010C1 5E pop esi
004010C2 03 F7 add esi, edi
004010C4 59 pPop ecx

here :
004010C5 47 inc edi
004010C6 A4 movsb
004010C7 46 inc esi
004010C8 49 dec ecx
004010C9 75 FA jne here

In order to increase the size of the ANSI Shellcode that can be used, we turned to the use
of the 16 bit register CX. Hence, the length of the shellcode can now be up to (2°16)*2
bytes, sufficient to write a Shellcode with quite a few functions.

Howewer, because the decoder cannot contain NULL bytes (0x00), the size of the
shellcode divided by 2 (this value will be stored in CX) should avoid some values like
0x0100, 0x0200,..., 0OxFF00, or generally, 0xXX0x00. This can be done by inserting
some instructions working just like NOP we have discussed before (0x 00 6D 00).

This piece of code is 16h length, which means that the shellcode will be smaller by
22*(23h-16h) = 284Dbytes (relatively considerable)

2.3 Use of Alpha2 Shellcode
For all these above methods, they haven’t cared about the input, in the sense of the to-be-

used ANSI Shellcode, and its effects on the length of the Unicode Shellcode.

For a normal shellcode, for instant Calc execution [4]:

/* win32_exec - EEITFUNC=seh CMD=calc Size=160 Encoder=PexFnstenvSub http://metasploit.com */
unsigned char scode[] =

™x29% xo9h k830 e wdet xd9 xeet xd9 ¥ 74N k2 44 x£4Y x5 81 w73V w13\ xoB "
™oxd BY x48h k11N %83 webh xfoeh kel x4 x3 4 xaeh x0ch k11 1ol x4 6 xe 3 k54T
"yxEdh xedh X34 k14 xhO0Y 47 ka7 198 X877 x5e Xo 3t xdeh kel 14T ka3 x5E"
A3 X7 K3 R 10N RZEY KTV X8 K88\ X644 xo2\ XG5 65 xef kBT k82 xle
"R X84 xadh xeSh RE3 v 12 xech 15 xhdh xadh xodh xdet xech x4 T xadh w77
™R3 Hdah x03h xSk x9T xSah k49 xEah x43h x5ah xe I X 10 k23 ket w14 w35
™yoxoel X85 x 7O ndlh wach xodh k084 x2 1 x4dh 2564 x30h x 1dh x43% x0 6% x44h x9a"
™yxbhEl x5ah xebh xgah xalt xdet xadt 18\ x4 xoeh xEG x 11 xoBh x4 6t xe 3 7"
™R E4L x19h w79 weTh xalt w104 xolh xe9h xdbh x56h x3 3 x4 xalt xb et xe2h w15
™0 xZed wd0h wefh w42t w48 x 1 weet w25 X2 5 x2 9 k7 dh wabh wd 6N w48 k11

For an Alphanumeric Shellcode, Calc execution [4]:

A% win3dZ exec - EXITFUNC=seh CMD=calc Size=343 Encoder=Pexdlphalluw http://metasploit.com */
unsigned char scode[] =

™yoxebt w03 159 xebh H05, el xES xEE xEE HEL Y w A WA 9h w4 Dh 49 49 g9
™xdOh w51 xEah K56 X5 K5 K36 X33 k30 X506 X 58 w3 w21 30N K2 K36
™A S A8 w30 A2 I HI 0N wd2Y A3 580 wEB w32 A2 wddh A2 HdE u3 4
M1 k32 RA L A g X330V A1 x 34N K5 k320 XA k51 k22 w30 k21 w2 g xg1r
M KEEYV XSS RI x5ah xIT VA2 xddh Hdah kA0 xAd xdeh x4 wdah xdet wda x3 4"
™42 x50 K42 k30N X A2 K30 xdkh K58 x50 ®I 2N xdeh k330 wdhh xdSh wde x3 7
Mywd B w30 wdah X5 T A1y 250N xadfh xdet xdl w58 wd L wddh wdah 1514 x4bh w55
T dfh wd5h w22 22 131 1300 Ak xde k29 xdah wdbhh xd5h 126t 133 b k35
™ d1h B0 X 50 Hdeh xd 1 133N A2 wdeh 129 x5 wdeh wdah a6 K58 12 o™
Mg E XA T RATV IO x A KAt xdoh gt kA d) XI0N 41 k300 K g xdeh wdh xde
Mg x4 KAhY I3 HA AV HES Y HA6Y K32 k26 KO0 x5 k2T x4 5 xdet wdhk 45"
Mg e k55 KA k42 X2 L\ X300 xdkh Kdeh k480 56N x4bh k48 xde k504 x4kt xdgr
™oxdbh x38% K2 k35 w4t a1 w218 X308 x4bh xde’ x4bh x48% xdeh ka1 wdh 35"
"xd1h w30 xdbh deh 149 x5 xdeh kA5, k2 XIZh wd e w30 xd3h et xd 1 k33"
™ dZh wdeh 26 1d6h 1Aby 138N A2 waddh w22 x A3 wd 5 w3IBh wd2h Hdeh Hdah x5TT
™oxdel k30 K4 38 w22 x5 x4\ K30 x4h\ 38V 142 w27 xdeh x4 1 K2 xdan
™oxdbh k384 Kdah kA6 xda\ 1300 x4k Kdeh k490 x50 x4bhh k580 X422\ k55 w42\ x4k
™42 k304 K42 x50 X 22\ X300 x4k K58 xdal ®I6N xdeh k23 4L\ x5S nd 1\ 53"
™xd B k2 X420 k264 X 43 HA5Y x29h N30 xdal A 43V w580 42 xdoh wdhh w47
A2 IS wdah X6 X2 1w x38N x2 6, X330 xA Y w55 wdah XA 6Y Hdah xg9
TS0 KA KA KIS B0 K3 0N AT I BN A H AL w AT wdeh w A5 KB HE1 36T
™wdet wd et a3 K86 K42 150 x5a;

We used the Metasploit Framework to generate some shellcode that execute the
calculator program on Windows OS. But each of them uses a different encode method (in
the following list):

» PexFnstenvSub

= Pex

= PexAlphaNum

= PexFnstenvMov

= JmpCall Additive

» ShikataGaNai

= Alpha2

We have dewveloped a tool for converting Shellcode from ANSI based ones to Unicode
based equivalents. And by the use of the tool, we conducted many tests to see which
decoder is best (having the smallest in size of the output Unicode shellcode)

And an amazing fact is that the shellcode encoded by the Alpha2 decoder is best.

Decoder Input Size Output Size (in memory)
Alpha2 330 1200
PexAlphaNum 343 1236
PexFnstenvMov 158 1464
Pex 160 1508
ShikataGaNai 161 1548
PexFnstenvSub 160 1568
JmpCall Additive 165 1600

3. Further Development

Though we have proposed some changes above to make the shell smaller, there is still
room for shortening the shell. Here come seweral ideas of optimizing based on method 2.
We haven’t succeeded in solving them yet.

3.1 The Decoder’s length

The method given by Chris Anley requires that the length of the Decoder must be a
multiple of 256 bytes or 100h in order for the pointer to the Sorter to be correctly
indicated.

05 00 75 00 4cC add eax, 4C007500h
05 00 74 00 4cC add eax, 4C007400h

This is quite a problem as we hawe to add some NOP-equivalent instructions (0x00 6D
00) to the shell and thus make the shell much bigger with some doing-nothing-code. For
example, for a 257 byte Decoder, we need to insert 255 bytes of NOP equivalents to
reach the length of 512 bytes.

So if we can find a solution to this problem, the shellcode’s size might be reduced by 0
to 255 bytes.

3.2 Other sorting algorithms
As we have talked, the size of the shellcode with our improvements is 2a, where a is the
size of the input ANSI Shellcode.

We wonder if there is a better algorithm for the sorter and the decoder to make the
shell even smaller than 2a or create a shorter Sorter.

III. UNISHELL GENERATOR

In order to put those improvements into practical uses, we have created a tool conwerting
ANSI Shellcode into Unicode Shellcode. This tool makes use of ShellcodeCore, a library
specializing in manipulating Shellcode, developed by SVRT-BKIS on researching into
Buffer Overflow vulnerabilities.

B UniShellGenerator

UniShellGenerator vi.0

. All rights reserved,

Inpuk

Fiter characters | (53 | Paste Clear

I* win32_exec - EXITFUNC=seh CMD=calc Size=343 Encoder=Pexalphalumm http:ffmetasploit,cc
unsigned char scode[] = B
" eeblao03 259 nebl w05 oed o F S of P o PP e 9o Ao A 3 oo™

"d9xS 1 xSal xSe xS 5E 36w 33 300 EA xS E 3 e U 30 2 e 30"

"B @ 300 A 23 I 3 0 e 2 4 3 GRS E e 32 4 2 e e 2 e 48 0 34" o
"o 11032 e L e w3000 Lot St oo 2 oo b e S 1 e 2 e 3000 oo 1
"5 SE I x5 k38 2 e oAl P d et ot Pt al el ot Bl o4

"2l S0 2 e 300 2 xS0 b x5S eSS e w33 e b 3R o e e 7
eSS0 a3 e U300 P oot e b B3 e oo 3 et al ot et bl 53"

PSS 2052 ot L 300 edb ot el e b S8 4B x5 3 wdb 35"

4
< | =
UniR.eqisker |E.ﬁ.x w | UniDistance | 0 |
Ckpuk
File name | ZAUnishelout, dat | [Browse
& S (&) Raw bytes | ASCIT-lke v | Tikanhatm
Unicode-based [] open this file after transForming

Information Board

--= UnishellCore v1.0 loaded successFully!

[*] Copw any shellcode then paste into the input box or drag & drop...
] Finally, press the Transform button..,

+] Conaratulation! Your shellcode's successfully transformed inko ASCIT-Form!

A screenshot of UniShellGenerator

IV. CONCLUSION

Abowe is our research on Unicode Shellcode based on previous documents on this issue,
and of course, our improvements to make things better. There are also some further
developments that we haven’t put into this paper.

Especially thanks to Chris Anley and the authors of the “Shellcoder’s Handbook™ for
their researches into Unicode Shellcode.

VL. REFERENCE

[1]. Creating Arbitrary Shell Code in Unicode Expanded Strings — Chris Anley.
[2]. Shellcoder’s Handbook: Discovering and Exploiting Security - Jack Koziol.
[3]. Practice Win32 and Unicode exploitation.

[4]. www.metasploit.com — HD.Moore

http://www.metasploit.com/

